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Abstract

Dense (- X)Pb(In2Nb,,) O3—xPbTiO; (PIN—PT) ceramics were synthesised by hot forging and thermal grain gromth) @QIN-xPT phase

diagram was investigated by X-ray diffraction and dielectric measurements. The morphotropic phase boundary zone was found to be between
a rhombohedral phase region for low PT contents and a tetragonal phase region for high PT contents, i.e. in thexd&dg€. 20mixture

of tetragonal and probably monoclinic phases was observedf6r37 at room temperature.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction diffraction to highlight the structural ferroelectric transitions
when increasing the temperature. The phase transition tem-

Lead-based relaxor ferroelectric solid solution ceram- peratures were compared with the anomalies temperatures
ics with (1— x)Pb(B;B2)O3—xPbTiO3 (B1 =Mg, In, Sc, Yb; observed in the dielectric constant curves.

B> =Nb, Ta) formula exhibit excellent dielectric and elec-

tromechanical properties, especially at compositions near the

morphotropic phase boundary (MPB). Such complex per-

ovskites are of greater interest for piezoelectric actuators,2. Experimental procedures
underwater and medical transducers.

(1 — x)Pb(Ma1/3Nb2/3)O3—xPbTiO; (PMN-PT) solid so- PIN-PT perovskite powders were synthesised by solid
lution offers a large set of ferroelectric/piezoelectric proper- state reaction via Wolframite method. Wolframite phase ox-
ties and exhibits Curie temperaturg.) values from 120 to  ide (INNbQy) was formed at 1100C for 24 h. The perovskite
170°C depending on the compositidhese lowT, prevent powder, calcined at 85 for 2h, was then pressed into
the use in more general applications. It has been reported thapellets and hot-forged at 100Q for 1 h with a pressure of
the system of (£ x)Pb(In/2Nb1/2)Os—xPbTiO; (PIN-PT) 1 T/cn?. The hot-forged ceramics were finally annealed un-
near its MPB x=0.37), which separates the pseudo-cubic der a Q flow at 1200°C for 4 h. Yellow pale translucent
and tetragonal phases, presents a high Curie temperatureeramics with high densities (>98%) were achieved.

T. ~300°C? and therefore potential for similar applications. PIN-PT poled discs were milled in liquid nitrogen for
This paper reports a new study of the PIN-PT phase powder X-ray diffraction. The X-ray experiments were per-
diagram. Three compositions: 0.68PIN-0.32PT, 0.63PIN- formed on a high-accuracy two-axes diffractometer using Cu
0.37PT and 0.58PIN-0.42PT have been studied by X-ray KB monochromatic radiation issued from a Rigaku rotating

anode (RU300, 18 kW). Selected regions of the diffractogram
* Corresponding author. Tel.: +33 1 41 13 15 84; fax: +33 141 13 14 37. containing the (111), (002), (0 2 2) and (222) peaks were
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3. Results and discussion presents a shoulder on the left sideTat 190°C, showing
that a rhombohedral-tetragonal phase transition occurs at

Fig. 1presents X-ray diffraction spectra of PINRT com- TrT ~190°C (Fig. 2b).
positions. For PIN-0.37PT, the tetragonal phase is clearly observed

At room temperature, X-ray patterns show clearly that between 150C andT. (Fig. 1c). Atroom temperature, (2 0 0)
0.58PIN-0.42PT exhibits a tetragonal phase characterised byand (2 2 2) reflections are large and present several shoulders.
a doublet of the (2 00) reflection and a singlet of the (111) (200) reflection presents three well-defined peaks whereas
one Fig. 1a)# With increasing the temperature, the two peaks (2 2 2) reflection presents a diffuse shoulder on the left side.
ofthe (2 0 0) reflection become closer and formgat 330°C Two different hypotheses can be considered. First, a mixture
a single peak characteristic of the cubic phase. The temper-between a tetragonal phase and a rhombohedral phase: the
ature dependence of the tetragonal and cubic lattice param+hombohedral phase would be responsible for peak 3 and the
eters is represented ig. 2a. At room temperature, the lat- tetragonal phase for peaks 1 and 2 of the (2 00) reflection.
tice parameters of the tetragonal phaseagre 4.022A and Then, a mixture between a tetragonal phase and a monoclinic
cr=4.132A. phase: peak 1 would be indexed as (0 peak 2 should be

For 0.68PIN-0.32PT, X-ray patterns obtained at room the superposition of (0 2 )and (2 0 03 reflections and peak
temperature show that (200) reflection is large and sym- 3 should be the superposition of (0 @2nd (2 0 Oy reflec-
metric whereas (1 11) is large and presents a shoulder on thdions. By comparing these results with those obtained on the
left side Fig. 1b). Reticular distances deduced from (111), morphotropic compositions of PSN—-PTPMN-PT:" and
(200) and (220) reflections suggest that the ferroelectric PZN-PTS this latter hypothesis seems to be the most prob-
phase at room temperature is rhombohedral. With increas-able. A Rietveld analysis is necessary to clearly identify the
ing the temperature, (111) becomes symmetric and (2 0 0)low-temperature phase. On the other hand, with increasing
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Fig. 1. (200), (111) and (22 2) peaks of 0.58PIN-0.42PT (a), 0.68PIN-0.32PT (b) and 0.63PIN-0.37A =@} and 190C.
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Fig. 2. Temperature dependences of the 0.58PIN-0.42PT (a) and 0.68PIN-0.32PT (b) lattice parameters and 0.63PIN-0.37PT (2 0 0) peak italecplanar dis
(c).

the temperature, the intensity of peak 3 decreases and van- Fig. 3shows the dielectric properties of AX)PIN—xPT
ishes atTyt ~150°C showing the monoclinic—tetragonal poled ceramics during a zero-field heating run (ZFH). The
phase transitionkig. 2c represents the temperature depen- dielectric curves, obtained at 1 kHz, present maximB.ak

dency of these (2 00) peaks reticular distances. corresponding to the well known tetragonal—cubic phase tran-
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Fig. 3. Temperature dependence of the dielectric cons%ratt 1kHz for different compositions of poled AX)PIN-xPT ceramics.
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Fig. 4. Phase diagrams of 4x)PIN-xPT system, solid line Alberta et Al.

sition. As expectedTmax increases withkx and remains be-

tween those of pure PIN and pure PT that are observed at 6

and 490°C, respectively.® In addition the relaxor behaviour,
which is observed for low values gfdisappears for > 0.32.

For x=0.25, 0.30 and 0.32 the dielectric curves

present another anomaly at a temperatlyelower than

Tmax- As shown above, this anomaly corresponds to the

the same conditions by Alberta et Awhereas an important
difference is observed for=0.37. The low temperature tran-
sition occurs towards-150°C instead of 20C as expected
according to their diagram. These results show that the mor-
photropic phase boundary is not described by a quasi-vertical
line but by an extended region arourd 0.37. This region

is between a rhombohedral phase region for low PT contents
and a tetragonal phase region for high PT contents.

4, Conclusions

The X-ray study has revealed that the MPB zone of
(1 —x)PIN—PT system separates a rhombohedral phase
for low PT compositions from a tetragonal phase for
high PT compositions. The composition near the MPB,
0.63PIN-0.37PT, hask of 290°C and presents a first struc-
tural transition from probably a monoclinic phase to a tetrag-
6onal phase afy ~ 150°C.
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